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ABSTRACT

This paper evaluates five maneuvering strategies for an

evader in a two dimensional continuous evasive game.. An

evader's movement, in two dimensions at constant speed, is

simulated by choosing courses that are ind1ependent and dis-

tributed according to one of the five course change rules

The times between course changes are independent exponential

random variables. An improvement over a previously estab-

lished least upper bound oii evader survivability is pre-

sented. The bulk of this paper is the presentation of

evader survivability as a result of the maneuvering strategy

he employs.
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i. INTRODUCTION

A classic military problem with current application isý

how to maneuver a mobile target in order to prevent success-

ful prediction of its position. For example how should e

aircraft carrier maneuver to maximize its survivability

against an ICBM attack?

Of primary importance to this problem is the time lag

between the decision to fire at a targete made at time t,

and the warhead detonation at time t+TL. This lag is called

time-late and denoted as TL. The decision to initiate such

an action is based in part upon knowing the target's posi-

tion at time t while the effectiveness of that action is

dependent upon the error in predicting that position at t+TL.

A. ICBM VERSUS AIRCRAFT CARRIER

Consider the ICMB versus aircraft carrier problem. As-

sume that the carrier operates in mid-ocean, possesses great

endurance, can make sharp turns and has as its only kinenatic

restriction a constant speed, v. The carrier is referred to

as the evader, E. The attacker, P, continuously observes E

from a nearby unarmed trawler. P's weapon is a land based

ICBM which has perfect accuracy, produces a lethal area A

(this lethal area can have any shape) but does not have a

mid-course guidance nor homing capability. Although P knows

4



E's position past and present, he also knows that his ICBM

will have a one hour time-late.1

P's problem is to predict E's position at time t+TL in

order to initiate an attack at time t. E's problem, since

he will not know of an attack until he observes the deto-

nation, is to maneuver in such a way to confound P's predic-

tion. 2 E's movement should be random because any nonrandom

movement would be vulnerable to extrapolation.

B. AN UPPER BOUND ON EVADER SURVIVABILITY

A lower bound on P's success, Pk' and consequently an

upper bound on E's survivability, 1 -Pk, is known. P knows

E's position at t+TL will be interior to or on a circle of

radius v-TL centered on E's position at t (which is known).

The enemy can then gaurantee a kill probability of at least

A/n(v.TL) 2 by choosing a lethal area randomly within the

circle of uncertainty (a wedge of random orientation will

do) [Ref. 4]. Then the maximum survivability E could attain

would be 1-A/I (v.TL) 2

This upper bound on E's survivability is a function only

of P's strength, that is the magnitude of A (the value

n(v.TL)2 is constant). Figure 1 is a graph of that survival

function versus P's probability of success.

1 Time-late is a summand of many factors in the command and
control problem as well as the missle flight time. For the
purpose used here it is sufficient to treat time-late in
total and not consider its decomposition.

21f E knows the time at which al attack is initiated then
the problem is trivial.
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Survivability-Versus Attacker Strength

FIGURE 1

Unfortunately the specific set of rules for E to maneuver

by to achieve the survivability depicted in Fig. I. is not

known.
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11. BACKGROUND

A. DISCRETE EVASIVE GAMES

It was felt that a two dimensional continuous game was

too difficult to solve. So the approach was to solve a

similar but easier game. It was assumed that the ocean was

a linear set of discrete points and that E's mobility con-

sisted of being able to jumrp either right or left to an

aajacent point [Refs. 2 and 31. Time-late became an integer

numiber of jumps that E could make between the attack de-

cision and warhead detonation. As in the exact problem E

had no knowledge of the decision to attack.

Discrete problems of this type are called evasive gamnes

and are classified by the number of jumps constituting time-

late. A one step discrete evasive game means E can move

either left or right one jump prior to detonation. Gamne

theory provides an immediate solution to that game; the

value is Pk=0.5 . Also there is an optimal strategy for E

in that game. At each jump E, should go left with probability

one-half or right with probability one-half. Employment of

I.

such a rule for each jump guarantees E a survival probabilit-y

of at least the game value, regardless of P's firing rule.

H{aving easily solved the one step game interest was

focused on the two step game. In this game E was allowed

two jumps during time-late. The solution has been obtained,

but it was not as easy to achieve as that of the one step

game [Ref..21.
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The direction of the analysis was clear. Knowledge

gained from solving the more simple games would be a step-

ping stone to the solution of the more difficult games.

Eventually the assumptions of linearity and discreteness

could be relaxed. Progress, however, in solving the dis-

crete games has been very slow. Researchers are presently

embroiled in solving the three step game.

B. A CONTINUOUS EVASIVE GAME

Washburn in Ref. 1 presented a different approach to

analyzing the ICBM versus aircraft carrier problem. He de-

veloped the probability density function of a particle

moving continuously in a two dimensional medium subject to

a specific set of mAneuvering rules. That approach was

distinct from previous work because it addressed the exact

problem. The results presented in this paper are an ex-

tension of that approach.

Washburn proposed the following strategy for E and

analyzed the evader's subsequent survivability, first as a

function of the attacker's strength and secondly as a

function of a specific strategy parameter. E was to select

courses from a uniform distribution. Course changes were

to occur as a Poisson process. This meant the time between

course changes would be exponentially distributed.

The exponential time between course changes has an

intuitive appeal because of the memoryless property of that

distribution. The memoryless property is: the probability

that E will not change course in the future, given that he

N



has not changed course for some observation period, is in-

dependent of the length of that period. Therefore, use of

the exponential time distribution should serve to confound a

prediction of future position by extrapolation, regardless

of the course distribution used. For example, suppose P's

attack decision rule required that he observe E maintain a

constant course for at least five hours prior to initiating

an attack. Such a procedure would not improve P's prob-

ability of a kill because the only information of any benefit

at the time an attack is initiated is E's position and last

course.

Figure 2 is a graph of the evader's maximum attainable

survivability when using the strategy of uniform courses

and exponential times versus P's strength for the optimal

exponential parameter, X. 3 For comparison the upper bound

on survivability is also presented.

"If we assume the parameters A,v,TL are known to both

sides, then the evader can select X to maximize the sur-

vivability. The evader will clearly be in trouble if he

makes A too small, because the kill probability is at least

exp(-X.TL) .4 On the other hand making course changes too

frequently will lead to a density function that is highly

peaked at the origin, which is equally undersirable..."

[Ref. 1).

3The exponential parameter, X, is the inverse of the mean
time between course changes.

4 Exp(-X.TL) is the probability that E will make no course
change during TL.

.9



I-Pk

! 1.0

• 0.8

' .UPPER BOUND

0.4

0.21

. 2 0.4 0.6 0.8 1.0

I A/r (v.TL) 2

Minim=m Pk for Optimal Parameter X Versus 4ttacker
Strength; Strategy Is Uniform Courses

and exp(X) Times

* 'FIGURE 2

"It is not known whether or not the optimal strategy forEL

E is a Poisson strategy of the type, just cons idered, or even

whether the uniform distribution on angles is. optimal within

the class." [Ref. 21
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I
III. RESULTS 01 SIMULATING THE CONTINUOUS EVASIVE GAME

The goal of this research was to determine if the uni-

form course rule was optimal within the class of Poisson

strategies or to find a better rule if it was not. For.

another rule to be better than the uniform one it would

have to enable E to attain a higher survivability than that

shown in Fig. 2.
The methodology of solving discrete games had not ad-

vanced sufficiently to achieve those goals. The methods

used by Washburn we're also not suitable because of the

mathematical difficulty of the problem.

SThe Poisson class of strategies is, however, uniquely

suited for analysis by computer simulation. This is due to

the memoryless property of the exponential times between

course changes. The results of such a simulation are pre-

sented in this paper in the form of improved survivability

for the evader.

Five course change rules were evaluateý in the simula-

tion. The probability density function of each is pre-

sented on subsequent'pages along with a graph of the re-

sulting attacker's Pk versus attacker strengtl, denoted as

S=A/ir(v.TL) 2 .5 These graphs are for representative values

of the parameter a. Alpha, a, is the product of time-late

and the exponential parameter X.

5 Course changes were assumed to be independent of the

tnderlying Poisson process.
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The simulation established a new lower bound on the Pk

the evader could yield to the attacker. Figure 3 is a graph

illustrating the improvement of the new bound over that

found by Washbu~rn. This new bound is the least lower bound

of all the Pk versus S curves for the four values of a and

.all rules simulated. Examples of such curves are shown in

Figs. 5-9. The old bound in Fig. 3 is the lower bound of

the Pk curves simulated using the uniform rule exclusively.

The minimal Pk as a function of a, over the five rules,

is shown in Fig. 4 for three specific attacker strength

levels. The curves in Fig. 4 confirm the statement in Ref.

2 that the evader should turn most often, that is a should

be highest, against the weakest opponent.

Comparisons of the Pk curves of the different rules

have shown that the umiform rule is not optimal for all

attacker strengths and a values. For example, the reverse

course rule (see Fig. 7) was shown to be better than the

uniform rule for -=l. The difference between these two

rules is illustrated in Fig. 10. Against a weak opponent

(strength 4.6) the evader would do better to use the re-

verse course rule rather than the uniform rule for a=l.

This improved survivability occurs because the reverse

course rule created a "flatter" evader position density.

None of -the five course rules evaluated produced a con-

sistently smaller Pk for all values of attacker strengths

and a. However, the left-right rule was dominated by the

other four in all cases. Each of the five course rules was

12



simulated at six different levels of a by varying ET. The

graphs of Pk versus A/r(v.TL) 2 for each simulation are pre-

sented in the Computer Output section along with tabulated

Pk'S for specific attacker strength levels as a function

of the course rule and the a used.

1.0"

0.8

0.6
OLD BOUND

NEW BOUND

0.4

0.2-

0.2 0.4 0.6 0.8 1.0

S

New Bound on Pk That the Evader Can Yield

as a Function of Attacker Strength

FIGURL 3
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FIGURE 4
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Density Function of Uniform Rule

FIGURE 5A
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Density Function of Modified Left-Right Rule

FIGURE 6A
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FIGURE 6B
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Density Function of Reverse Course Rule

PIGURE 7A
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L=l. 0 A/T (v.TL)2

FIGURE 7B
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FIGURE BA
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Density Function of Truncated Uniform flule

FIGURE 9A
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A Comparison of the Tradeoffs Between the Uniform
and Reverse Course Rules As a Function of Attacker Strength

FIGURE 10
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I-
IV. SIMULATION MODEL

Let E's position at time t be at X=0, Y=O of a cartesian

coordinate system. Then rotate the axis until the positive

abscissa is aligned on and pointing in E's last direction

of travel. Then regardless of the course rule used by E

there is at least exp(-c) probability that he will be at

X-v.TL, Y=0 at time t+TL. This is the probability that E

does not change course during TL. So the attacker's prob-

ability of killing E by centering a small portion of his

lethal area at (voTL,O) is exp(-a). Then add to exp(-a)

the integral of E's density function over that part of the

uncertainty circle where the rest of the lethal area is

targeted to determine the total Pk" The total amount of

lethal area allocated in this manner is the numerator, A,

of the attacker's strength function S.

A computer program to simulate the above computation

was written in FORTRAN and run cn the IBM 360. The program

consisted of two phases, first the play of a strategy and

secondly the scoring of that play.

A. SIMULATION OF A STRATEGY

To create a single play the evader's track was simulated

from an initial position at time t to the resultant position

at t+TL. The track was the result of a specific maneuvering

strategy being simulated. A strategy was made up of two

decision rules. The first rule determined the times be-

tween course changes which were exponential random variables

with mean ET=l/X. This rule was common throughout all of

21



the simulations, although the parameter ET was a variable.

The second rule determined the magnitude of subsequent

* course changes. The only other kinematic restricticn was

a constant speod, v, for the evader.

To start a play datum was initialized by setting t=O,

*X(O)=O, Y(O)=O and an initial course, cl, was selected from

.the uniform distriLiution. Then a sequence of exponential
6

times [ti]i=l,N(TL) were generated and a sequence of course

changes, [oili-2,N(TL), were generated using the course

change rule. The evader's position at t=TL was

N-1
X (TL) =• voti0(Cos(ci)-Cos(cN)) + voTLoCos(cN) 1.1

N-1
Y(TL) = i v-ti°(Sin(ci)-Sin(cN)) + v°TL°Sin(cN) 1.2

B . SCORING THE PLAY

Once E's position at t=TL was determined that observa-

tion was scored. To score a play the coordinates of E's

position, X(TL), Y(TL), had to be transformed. The purpose

of the transformation was to make the observed position in-

dependent of the particular initial cource c 1 . The trans-

formation was a rotation of the coordinate axis about the

datum so the positive abscissa would be aligned in the

direction of the initial course. The transformed position

was:

6 The nugiber of elements of this sequence, N(TL), is a
Poisson random variable.

22



X'(TL) = X(TL)Cos(cl) + Y(TL)Sin(cl) 2.1

Y'(TL) = Y(TL)Cos(cl) - X(TL)Sin(cl) 2.2

An example of this transformation is shown in Fig 11.

If E had not made a course change during TL then his

transformed position would have been

X (TL) = v.TL 3.1

Y'(TL) = 0 3.2

7A grid system of square cells was placed over the

playing area of Fig. 11B and a determination was made as to

I

RADIUS = v°TL

ORIGIN: Datum ORIGIN: Datum

B: X(TL) ,Y(TL) B: X' (TL), Y' (TL)

C1: Initial Course A: (v.TL,O)

SAMPLE PLAY PRIOR SAMPLE PLAY AFTER
TO TRANSFORMATION THE TRANSFORIATION

FIGURE 11A FIGURE liB

which cell X' (TL), Y' (TL) was in. Each cell of the grid

had an associated value which would represent the number of

times a play resulted in an observation in that cell. When

7 The cumulative cell area was normalized by the factor
;(v.TL) 2.
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the appr~opriat~e cell wag determined, foc the play'being

scored, that value was incremente~d'by one.

A simulation runi was composed of 16810 plays and scoring

Lt'eraiions for i strategy utilizing a ýpecific course chan~e

,rule. The input variables for a run, besides the course

rule were v, TL and ET. At the end of a simulation run the

grid sysznm was a-two "imnsiona1 histo~gram of E's p)~sit~ion.

The frequencies in the histogram were thoui ordered, accuniu-

1ated and normalized to achieve ctm~uative cell probabilities.

The ordering corresponded to the conservative assu~nption that

P could divide hip lethal area and target only those cells

with the higher prbblte.These probabilities were

then plotted alntthe cuznlati've cell \area they repre-

se~ted . This graph was labeled Pk versus attacke-r strength~

and was the primary output of the program.

Thirty simulation runs were niade to inv~estigate five

:different course change rules and six different values of

ET. For all iuns the following constant values were main-

tained, v=-5 knots and TL=2 hours. The graphs from those

runs Are included in the Computer Output section. Each

course change rule wa s simulated many different times, the

only difference betwean runs being the pseudo random num-

Iber generator seeds. ,This was done to check for the vari-

ability of the pk graph for that rule. Tn all such runs

8
The aniount of area in a cell was denoted as cell size and

equal to'(2*TL/'41) 2 . TL and v were held constant there-
fore cell si-ze ,--s always approximately 1/4 nm2.



I i i

the resultant graphs were so ,similar that any diffexznceI

was not distinguishable. For simulation run required two

minutes and forty-five seconds using 125 K on the IBM 360.

25
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V. CONCLUSION

It was determined that the uniform course change rule

is not optimal within the Poisson class of strategies. Com-

parison of various rules, see Fig. 10, showed that under

certain conditions a single rule such as the reverse course

change rule is better. Also the new lower bound on pk,

* taken over all rules and values of a simulated, is an im-

provement on the lower bound achieved frcm only the uniform

rule.

Certainly not all the possible course change rules were

simulated. The rules evaluated, however, were representa-

tive of the broad class of possible rules. When compared

to the uniform rule, all but one of '-]e other rules showed

that E could improve his situation if he knew P's strength

by selecting the better rule for that encounter. The one

rule that was consistently dominated was the left-right

rule.

It remains unknown whether or not the optimal strategy

is a Poisson strategy.
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APPENDIX A

FLOW DIAGRAM

START

IX -- 555551 --- ipseudo-random number seed, an input '.variable

V-- 5.0 --- ;evader speed inkknotjs

TL -1 ---2time-late in hours '3

ET -- 1.0 --- !mean time between course changes, an input

if variable 
a nu

PP(41,41) --- ,playing area and histogram; each cell is

PP(ij) -- 0 ,a square with dimension (2*V*TL)/41
for all i,,

INDEX(,J) -- 0 eIsPP(ij) an exterior cell

KNDE (i,j) 1-- eIs PP(ii) anineorcl

No
IJMDEX<i,'j),,,, 2 j

D > -_J@

. • j .. 16ý810 _

X - 0.0
y -0.0

2Clock 
-- 0.01C--°'0.0

IFR,--' TL-Clcik • ----
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STOP ~~~ Geraphat e ru attackle r tegh
Geert a~ coursrnoslieeltalae
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[Subroutine TrktmCET,r,t)i

t -- ET*ln(r)-

Returnm-

Su-broutine Corse(r c

Pi.- 3.1415

if -- 2"Pi

b--

Idelta c -- r*(b-a) + C

c-c + deLta c

c -- C,Mod(f7)

lReturn

[Main

iSubroutine Tcorse(r ,

29



Is r Fbetween 10 and 0.25 inclusive-

Yes

lb -- /(2*Pi) -s*Pj/4

id--

le -- (b**2)-4*a*d

Idetc -- (-s*Pi*2/4 -rt

eDq No(b*2 
-4o

30s



No ils r greater than 0.5 and less than or
1e ual to 0.75

Yes

rprime-r -0.5

a#-- s/2

b-1/(2*Pi) -s*Pi/4

[d -- -rprim~

a -(b**2) -4 4* a*7d

db I c- /(-bPI - Sq*t*j/(

Fd -- (-s*(Pi.'c*2)/4) - =rpri-ne

e -(b**2) - 4*a*d *

31.



c + delta

ic -- c,Mod(f)

lReturn

FMain

iSubroutine Pcorse(r,c)-

jP1 3.1415

iIs r greater than 0.5 -a -:=/

Yes

---/2dlt Sqrt(a) I.

lb -- /(2*Pi) + 3*Pi*s/2

delta c - (-b+Sqrt(e)/2a

Idelta c2 (-b-Sqrt(e))/C2'*a)

32



d1ta c -- delta c2  delta c--delta c

FC--c+-delta c

rc -- c,Mod(f)

FRe ur n

FMain

Subroutine TrncrB (r, c)

1Pi --- 3.1415

f -- 2*Pi

la -- Pi/6

b -- llkPi/6

delta c -- r*(b-a) + a

ic-c +delta c

Return Mi

33



ISubroutine Lrcars (r,c)

lPi -- 3.1415

34 *P



COMPUTER OUTPUT
• • TL/ET

Rule 1.0 2.0 3.0 4.0
Uniform .729 .580 .501 .486

Lef-ig .737 .580 .501 .486Left-Right

Reverse .690 .572 .548 .564
Course

Left-Right .917 .768 .650 .588

Truncated .697 .556 .509 .517

Uniform

column .690 .'556 .501 .486

minimum

kfor attacker strength equal 0.2

Table I

TL/ET

Rule 1.0 2.0 3.0 4.0

Uniform .854 .784 .752 .760

Modified .878 .784 .752 .768
Left-Right

Reverse .838 .791 .799 .831
Course

Left-Right .964 .909 .870 .854

Truncated 1.846 .768 .768 .815
Uniform

column .838 .768 .752 .760
minimum

Pk for attacker strength equal 0.4

Table II
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inlET

Rule 1.0 2.0 3.0 4.0

Uniform .933 .909 .901 .91.7

Modif Led .948 .909 .901 .917
Left-Right

Reverse .933 .917 .925 .948
C.oujrse

Left-Right .987 .987 .980 .987

Truncated .933 .909 .909 .933
Uniform . . ..

column .933 .909 .901 .917
m~intmuml

Pk for attacker strength equal 0.6

Table III
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COMPUTER PROGRAM

A SIZU."ATION OF THE CONTINUOUS EVASIVE

GAME FOR THE POISSON CLASS OF STRATEGILSN ,
!NTEGeP * 2 PPINDEX
INTEGER * 2 ,CU'ISUM
INTEGER * 2 NCOUNT
INTEGER *2 XPS! INTE GER -. C. I TF.3

1. INTEGER sw4 TOTC-ELI, i-
REAL W. 4 IN TEL

REAL LABEL' I/
REAL*8 ITITLF(12)/OCLOTHIER'. THOkAS',' J, 0,3*1

X,,STRATEGY'.. TRNCRS',' (LAMDA', * TL)= ,
*2* ' 4 1/

C BY MAKING TH5 HISTOGRAM INTEGER STAR TWP TH'. AMOUNT
C OF STORAGE REQUIRED FCC, THE PROGRAM WILL BE REDUCED.
C

DIMENSION PP(41,4.1) INDEX([1,41).
DIMENSION XP(168Lt 60(41,41)
EQUIVALENCS (PP(l1vIXP( {
DIMENSION ELX(2) ,EEY(2)tEX(692),EY(692),iEXX(6921
SIMENSION EYY(692)

C!

C PP IS THF PLAYING AREA AND HISTOGRAM. EACH CELL IN
PP REPRESENTS AN AREA OF SIZc CELSIZ, INDEX IS A

.C BOOK-KEePING ARRAY USED TOIDaTERM1,N. WHICH CELLS IN
C PP ARE FEASIBLE, E.G, IF INDEX(IJI=O THeN PP(IJ) IS

AN INFEASIBLE CELL. SIMILARLY IF INDEX(I,J)=1 OR 2
C THEN PP(I,.J) .IS A FEASIBLE CELL.*
C
C PP IS A SQUARE WITH THE TIME-LATE CIRCLE INSCRISeO IN
C !7.A TI-EREFORE PP HAS SOME CELLS.THAT ARE NOT INSIDEC TH•-iTIME.-LATri CIRCLE AND FOR THOSE CELLS THEIR INDEX
C VALUE IS ZERO. FOR THOSE CELLS IN PP THAT ARO CON-
C TAINED ENTIR-.!LY IN TH" CIRCLni TH5: ASSOCIATED IN02DX
C VALUE IS ONF. AND LASTLY THERE AR= THE CELLS MN PO
C THAT ARE ON THE EDGE Oý- THE CIRCLEt rH.S" ARE CALLED

C EDGE CELLS AND HAVE THE INDEX VALU: OF TWfl,C
C NCCUNT=o'

PI=3o 1415926
DATA IX V TL ETI/37915,05.0,02.00OO0.5/c V IS PA&TICL.L SOc.c..

.C TL IS TH=. TIME-LAT.
C ET IS THE MEAN TIM" BETWEEN COURSE CHANGES
CC IX IS THE SEED FOR THE PSEUDO-RANDOM NUMBER GENERATORS

DELTAX=(2.O*V*T.)U/41.0

C DELTAX IS THE HORIZONTAL DIMENSION OF A CELL,
C

C.LSIZ=LDELTAX**t2
C CELSIZ IS THE AMDUNT OF REAL AREA CONTAINE.D IN A CELL.
C

* c K=2O
C THF. NUMBER OF CELLS' IN EITHER DIMENSION IS ALWAYS A
C CONSTANT 41,. THIS CONSTAI}T IS EXPReSSeD AS AN ODD
C INTEGEP ANDi WRITTEN IN THE FOLLOWING MNN;ER,C 41'= 2 * (K.) + 1. THEREFORE K = 20.
C

C ZERO OUT THE HISTOGRAM
of] 5 =11,41
DG 4 J-1 41
INDEX(IJi=O
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PP(I, J) =0
400(1 M~O.
4 EONTINU§5 ONT NUZ

* 'C
C NOW TO CHECK EACH OF THE CELLS IN THE HISTOGRAM AND
C DETERMINE ITS ASSOCIATED INDEX VALUE.
C

* QUADRANT I
DO 42 J=21.41
DO 41 1=1,21
OUT= (V*:TL-JtDEtLTAX)**2+ M -1)*DELTAX-V*TL) **2

*IN =(*LI-1DLA)*2(*ETXVT)*
RADSQ=(V*TL)**.2
IF(OUT.LEe.RADSQI.AND.(IN.LE.RADSO) )INDEX(1.J)=l
IF OUT.GT.PADSQ).AND.(IN.GT.RADSQ))INDF-X(1,J)=O

IF((OUT.GT.RADS.~AND.(IN.LE.RADSO))INDEý-X(IJ):--2
41 CONTINUE
42 CONTINUE

C
C
C
C QUADRANT 11 CHECK

DO 44 J=1:21
00 43 1=1.21
OUT=(V*TL-( 1-1 )'ý9DELTAX )**42+CV*TL-(J-1)*OEL TAX)l**2
IN(VT-*!-T )**+(* -*ETX3*
RADSO=(V*TL )",*2
.-IF((OUT.LE.RADSQ).AND.),(IN.Lc.RADSO))INDEX(I,J)=I.
IF( (OUT.GT.PAD'SO).AND4,IN.GT.RADSQ))INDqX( I *Jl)=O
IF((OUT.GT.RADSQ).AND.(IN.LE.*RADSQ))INDEX( 1,J)=2

43 CONTINtI*
44 CONTINUE

C QIJADPANT III
DO 46 J1, 21
DO 45 1-21 41
OU=(*L -1 DLTX A2( D .A-. L
IN=(V*TL-,I-*OELTAX)**2+(tI-1)*DELTAX-.V*TL)**2
RADSQ=( V*TL)**2

IFI(OUT:GT:PADSO):,ANF).(IN.GT.RADSQ))!NDEX(1,.'BO
IF( (OUT.GT.RAD SO). AND. (I N. LE. RADSQ) )INDEX( I.J)=2

45 CONTINUE
46 CONTINUE

C

C QUADRANT IV CHECK
.DO 48 J=L1,41
D(3 47 1=21,41
OUT=(V*TL-X.;I,:DELTAXI**2+(V*TL-J*DELTAX)**2
IN =(VTL-(1-1)*.DELTAX),*2+(V*TL-(J-1)*DELTAX)*1t2
RADSQ= (V.'T L) )*t.
IF( (OUT. LE.RADSO). AND. U N.LE.RADSQ) )INDE.X ( IJ)
IF((OUToGT*RADSQ)oAND.(INeGT RADSo) )INDEX( I J)=O
IF((OIUT.GT.RADSQ).ANO.(IN.LE.RADSQ))INDEEX(ItJ)=2

47 CONTINUE
48 CONTINUE

C
C NOW TO SIMULATE THE PARTICLE MOTION UNDER THE
C SPECIFIED RULES* THIS IS THE MAIN DO LOOP IN THS
C PROGRAM. FIRST A TIMS UNTIL THE N:EXT COURSE CHANGE
C IS GFNERATED* THEN A COURS'E TO OF. ST!SERRi-D IS GEN-
C ERATED. XX AND VY ARE THE' TWO COMPONENTS OF P-OSITION
C ADDED DUt* TO A COURSa 'AND TIM': SEGMECNT. X AND Y ARE
C THE UPDATED POSITION cROM DATUM. AT TIM;E-LATE TH;-*
C UPDATFO POSITION IS CONVERTED TO A CELL POSITION AND
C THAT CELL VALUE IS INCREMENTED BY ONE.
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C
C DO 3 J=1,16810

X=0 *0

* CLOCK.0 0
TRETICLOCKTALL RANDUUlXYvR)

SX PTVC CALL CORSE.(RIC)
THE TA =C
GO TO 66

1 TR=TL-CLOCK
ALL RANOU(IXIY,R)

IX=IY
CALL TRKTM(-CTR,T)

TT=AMINI(T,I R)
CALL MOVý(V,Tr,C,XXyy)
C LOCKC KLOCK+ T
x=x+xx
Y=v+YY
IF(CLOCK.LT.TLI)GO TO 1
XPRI ME= X*COSý(THE TA) +Y* SI N( THIFTA)
YPRIMF=V*.COS(THE.TA) -X*SIN(THST'A)
XcXPR I McE
Y=YPRIMtE
CALL RANDU( IX, IY,9R)
Ix=IY
CORR=1 .0
CALL HISTOCKDELTAX.,RCORRX,I)

qJALL RANOU( IX. Iv R)

COIRR=-1. 0
*CALL HISTO (Ko DELTAXR, CORR iY,1I

C TH2M PARTICULAR C5LL 19J IS DETERMINED 13Y TWO SUCCESS-
C IVE CALLS OF HISTO. IT IS POSSIBLF A POSITION X,Y
C COULD BE DETERMINED TO Ri IN AN INFEiASI8L-- CFLL.
C IF THIS HAPPENS THEN RSSOLV WILL B7 CALLED TO CHANGE
C THAT CELL ASSIGNMENT IN A PRESCRIBED MANNIR TO A
C FEASIBLE CELL.

IF (INDEX (M. ,Lm).o0.)GO TO 31
30 PPCM L)-PF'(M,L)+1

GO T6 3
?I CALL RESOLV(L,M,I,N)

NCOUNT=NCOUNT+l
L=I
M=N
GO TO 30

3 CONTINUE

NUPC EL=0
NUPEDC=0
CR 1T520 .0
D0 52 1=1,41
DO 51 J=1,41
IF(PP(IJ).EQ.O)GO TO 51

* ~NUPME=NUPCE L+l
IF(INDEX(I,J).NE*2)GO TO 51
NUPEDC=N0JPB0C+ 1
CRITE2=CRITc2+PP(I ,J)fl681ý .0

51 CONTINUEm
52 CONTINUE

CR1 TE3=NtJP")C
RN UP FO=N UlP 'DC
RNUPC7=NUPl'cL
CRITEf1NUPtD/_RNUPC5
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NUPI NC=NUPCEL-NUPE DC

2 2WIF 203) PG '
2 3 FORMAT(hl1960X,1PP PAGE 1)

DO 295 1=1941WRITe(69204) (PP(IJ)#J"1,15)

204 FORMAT (" 191517)
205 CONTINUE

WRITE (61206)
206 FORMAT(IO't60Xq'PP PAGE 21)DORI208 1 =1941WTE(69207) (PP(I,J),J=15,29)

207 FORMAT(' '91517)
208 CONTINUE

WRITF (6.20?)
209 FORMAT(@ 60XXtPP PAGE 3')DO 211 1--1.41WRITE , 2I0) (PP( I,tJ) ,J=29,q41)

.210..FORtAT(I ',1317)
211 CONTINUE

C
C NOW THAT THE HISTOGRAM IS BUILT ITS EL.EMENTS ARE
C ORDERED SO THE H!GHEST VALUES ARE IN THE LOWEST NUM-
C BERED CELLS.
C
C

1000 IC=O?Q(1010)I=j,1680+
AXXP(I G-1XP(68 GO TO 1010MAX=XP( I+1 )

XP I+1 )=XP ( I)
XP(I )=MAXIC=lO

1010 CONTINUE
IF(lC.NE.0)GO TO 1000
DO 2000 I=1,41
DO 2010 J=l,41
OQ(I ,J) =PP(JI)

?010 CONTINUE
2000 CONTINUE

DO 1030 1=1,41
DO 1020 J=lo41PP(IJ)=00(1,J )

1020 CONTINUE
1030 CONTINUE

c

AFTER ORDERING THE CELL VALUES THEY ARE ACCUMLATED SO
EACH CELL CONTAINS THE SUM OF ITS OWN VALUE AND ALL

C THE VALUES PRECEDING IT*

CUMSUM=0
DO 11 1=1,41
DO 10 J=1,41
CUMSUM=CUMSUM+PP(I ,J)PP( I J)=CUMSIJM

10 CONT INUS
11 CONTINUE

CC NUMEXC=O
NUM4INC-O
NUM5DC=0
00 33 1=1,41
DO 32 J=l 41
IF (INDEX(I,J).EQO)NUMEXC=NUMEXC+1
IF (INDEX(!X,,).E1QI)KUMINC=NUMINC+l
IF (INDEX( IJ ).EQ, 2) NUMEDC=NUMEDC+4

32 CONTINU.
33 CONTINUE

NUMCEL=NUMINC+NUMFDC
TOTCEL=NUMEXC+NUM2DC+NUMINC
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NOW TO LOAD THE FIRST 900 CELL VALUES INTO THE PLOT-
TING VECTOR EY. THE CUMULATIVE NUMBER OF LOOKS OR

C KILL POWER WILL BE PLOTTED ON THE X AXIS.

E(1) =0.00E X ~23 lsl
13l=0.0

II(23=1.'0
C

DO 15 1=1,16
DO 4Jl41

YN j=PP( .J)/l68l0eO
X N/1-3 85*0*1 I14 CONTINUZ

15 CONTINUE
DO 16 J31,36
1=17

YM=PP(,J 316810 .0
1X(N)=N/l3 85.,0

16 CONTINUE
C

DO 17 J=37.41
I =17i
N-( I-i)*41+J
L=N-69 2
EYY(L)=PP( 1,1)116810.0
EXX( L)=N/1385. 0

17 CONTINUE
DO 19 1=18,33
DO 18 J=1.41
N=(! -13*41+1
E =N-692YY(L )=PP( !.J /16810.0
EXX(L)=N/1385*O

I9 CONTINUE
DO 20 J=1,31
1=34
N=( I-1)*41+J
L=N- 692
EYY(L ) =P P( 1 J)/ 168 10.0
EXX(L)=N/1385*0

20 CONTINUE
WRITE(6,606) NCOUNT

606 FORM,AT(//,25X,'NCOIJNT liOUALS 1 116)
WRITE (6,100) NUMýXiUEC N4 ,TCL

100 ORMT (*l0b'NMEX='116 , 5X, 'NUMEDC=' ,116v5Xt' NUMIN
XC-=11 5XTCTCiL-' 116)
WRI+c(6'1I cRIfTE 3,pRI T7_ -CPTTF2

101 FORMAT //1t1OX,'NUN¶BER OF POSITIVE EDGE CSLLS IS 11l
X6,//,IOX,' THE ORC=NTAGtC OF POSITIV2 CcLLS WHICH ARi
XD F ELL IS -$lF4.39//il1OK,'THE AMOUNT OF PROBABILIT
XY IN THE EDGEc CELLS IS I F4.3)
CALL DRAW (2,EEX,EFY,1 ,ULABELITITLE,0,0,0,0,0,O,9,9,
XO.LAST)
CALL DRAW (692 ,EX,EY,2,OLABCL, ITITLS-,Opt,0,0,,O,9,9,
XLAST)
CALL DRAW (692,Et-XX,'YY.,3,0,LABELITITLEt,0,0,0,,O0,9,

X9 0~ LAST)
SW0F
END
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I 1..OUTINE RANDU(IX.PlYiYFLI
Y.IX*65539
IF(IY5 )S 6 6

5 IY=IY+214i483647+1
6 YFL=IY

YFL .VFLA. 465661BE-9
RETURN
END

SUBROUTINE TRKTM(ETvR,T)
RA=1.O-R
T1z-ETA LOG (R)
r2=iET*ALOG(RA)

R-PTURN
END i

SUBRO(JTINt: MOV=(VSLqTIMEtANGqXY)
X=VEL*TTM#*CDS (ANG) 1
Y=VEL*TIMNE*SIN (ANG)
RETURN
END

SLBROUTINE HISTO(K+DELTAXRCOPRXI)
UPBND=((2*K+1)lýPFLTAX)/2.0
L-2*.K+1
XX=(X+(CORR'*UPBMD) )/OELTAX
XX=CORR*.XX
Xl=AMOD(XX,1 .0)
M=INT( XX)
IFI C-0 QO)GO T~l 1
IF M.'SO.L)GO TO 2
IF(X1.NE*0o.)GO TO 3
!F(R.GT*0s51G0 TO 3
I=M
GO TO 4

1 =1 1 I
GO TOT~T 4

3 1=M+2.
4 RETURN

END

SUBROUTINS RESOLV(! qJpL9M)
IF I.GTe2l)G0 TO 2
IF IJ*GTo2l)GO TO I.

GO TO 4
1 L=I+1.

GO TO 4
2 IF(JvGTe2l)GCL_2TO 3

L=I-l
p-=J+l
GOTO 4

3 1=1-1
IA=J-1

4 RETURN

ENDI
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SUBROUTINE CORSE(RC)
PI=3.1415926
B=2 0*P
Fu2.0O*P!

DELTAC R*( B-A) +A

RETURN
Er D

SUBflOUTINE.- rcORS:-(R.PC)
c R. IS THE UNIFORM~ VARIATE USED TO3 GENERATE THE NEXT
C COURSE CHANGE.

C CSTHr PRESENT COUR'SE AND WILL BE 'RETURNED AFTER
C ADDING A NE~W HT-ADING CHANGE..

DELTAC IS THE AMOUNT OF THE NEW HEADING CHANGE

c S isTHr- TEEPVý SLOPE AND IS BETWEEN 0 AND
2/(I**D=-0.202. NOTE q S CANNOT EQUAL 0.

C
P1=3.141 5927 -

C
IF(O.0oLE*R.ANDbR.LE*0*25)GO TO 1

C IF(0.25.LT*R*ANDo,.LSE.0*5)G0 TO 2

C IF(0.5*.LT.R,,AND.R.LEsO.75)GO TO 3
c IF(0,75.6LT.ReAND.R.LE.1*O)GO TO 4
C

1 AmS/2.C
B=(1.O/'(2e0*P ) )-( 5*P'/4eQ)
0= -I .0.,'R
E=B*'*2--490*A*D
DELTAC=(-1,0*B+SQRT(E) I/C 20.*A) -

GO TO 5
C
C

3 RPRIM9E=R-0*5
A=S/2,O Jl
D=-i .0:hPPRIMa
E=B**2-4*.*0Aw.D
DELTAC=(-1*0*8+SQRT(E) )/( 2.O*A)
DELTAC=DELTAC+PI
GO TO 5

C
C

2 A= (-1. 0,(tS)12, 0
D=(1.OI( 2.*PI* I)/+(3.*SPI/ 40)
E=B**.2-4*0*A*D
DELTAC=(-1s0*B+SQRT(S) )/(2.0*A)
GO TO 5

C
4 RF'RIME=R-'0.5 -

B=(1.0/(2.0*-PI))+(3.0*S*PI/(4.01I)

E=B**2-4.0*A*D
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DELTACu(-1.0*B.SO)RT(E) )/(2.O*A)
DE LTAC=DELTAC+PI
GO TO 5

C
c 5 CoC4DELTAC

c Fu2.0*P!

c CmAMOD(C ,F)

z RETURN
END

SUBROUTINE PCORSS(RC)
P1=391415926
F=200*PI

A=2. D*RfS
DELT AC=SORT(A)
GO TO 3

8=C1-O/(2-O*Pl.'+(3.O*PI*S/2.O)
D= 10-Sl(!, ')-R

DELTC2=(-B-S0RT(F) ) /(2.0tA)
Ir-(P1.LT.DELTCl.Aý1D.DELTCl.LE.F)GO TO 2
0ELTAC=D'-LTC2
GO TO 3

2 DELTAC=DI.LTC1
3 C=C+DaLTAC

CcAMOD(C,9F)
RE-TURN!
END

SUB3POUTINS LRCOfRS(R,Cl
PI =Be 1415926
F= 2* 0* P 1
IF(R.GT.O.5)Gr.) TO I.
C=C+(PI/2.O)
GO TO 2

1 C=C+((3.0QhPI)f2.01
2 C=AMOD(C,F)

RE TURN
END

SUBPOtJTINE TRNCRSCRC)
P1=3*1415926
F=2oO*PI
A=PI /6.0
B=(11*O*PI )/6.O
OELTAC=R",(9-A,' -A
C=C+DELTAC

h=AMOD( C F )
RE-TURN
END
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